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General  

NORMAL MODES AND NONLINEAR VIBRATIONS - 
The concept of normal  modes of vibration h a s  been extended by y2,y 4 

Rosenberg l  to nonlinear oscillations of any finite number of degrees  of 

f reedom. The wr i t e r  has  pointed out2 that cer ta in  nonlinear continuous 

sys tems,  charac te r ized  by the separabili ty of the space and t ime var iab les ,  

v ibra te  in no rma l  modes  in the sense defined by Rosenberg.  In par t icu lar ,  

the wr i t e r  has  shown that a simply-supported beam rigidly held a t  i t s  ends 

i s  capable of vibrating in normal  modes.  

The motion of beams  with axial  tension i s  governed by the differential 

equation 

a2, t p- = o  a Z w  a4, 
ax4 ax2 a t2 

- N- EI- 

with 

in which N i s  the axial  force ,  w i s  the l a t e r a l  deflection, a the length of the 

beam,  A its cross-sect ional  a r ea ,  E i s  Young’s Modulus, I is the moment  of 

iner t ia ,  and t i s  t ime.  

In-?the c a s e  of a simply supported beam,  a sine function in the space  

coordinate effectively sepa ra t e s  the var iab les  in ( l ) ,  as i s  well known, and 

no rma l  modes  emerge  very  simply. 

separabi l i ty  i s  confined to the simply supported case .  

A s  far a s  the wr i t e r  i s  aware ,  this 
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It i s  cer ta inly very  surpr is ing that no rma l  modes cannot be  readily 

defined f o r  nonsimply supported beams.  

clusion that the concept b reaks  down completely when the boundary con- 

ditions a r e  changed. Consequently, it becomes  necessa ry  to  general ize  

this  concept so as to take into account physical  sys t ems  in which var iab les  

a r e  not separable .  

It i s  difficult to accept the con- 

While the possibil i ty of such theoret ical  extension exis ts ,  i t  i s  

proposed to investigate f i r s t ,  by an approximate numer ica l  procedure 

as wel l  as  experimentally,  whether such no rma l  modes,  conceived of 

intuitively, a r e  stable.  

T ime  Dependent Normal  Modes 

If one r eca l l s  the definition of no rma l  modes in l i nea r  oscil lations,  

it i s  evident that they can occur  only under cer ta in ,  quite res t r ic t ive ,  init ial  

conditions. Thus, a beam will not vibrate  in a no rma l  mode unless  i t  i s  , 

s t a r t ed  exactly in the appropriate  mode, which, in turn,  depends on i t s  

boundary conditions. 

not v ibra te  in a no rma l  mode. 

prac t ica l  value, the point made  here  i s  that  no rma l  modes  requi re  res t r ic t ive  

conditions fo r  the i r  actual occurrence.  

A beam which i s  given an a r b i t r a r y  s tar t ing shape will 

While the concept itself may be of considerable 

Returning now to the system governed by equations ( l ) ,  the simply 

supported case  (where  the var iables  separa te ) ,  i s  charac te r ized  by the 

fact  that the mode shape itself i s  independent of t ime being a t  all t imes  

a s ine  function. In the case of other boundary conditions, since var iab les  
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do not separa te ,  one must  suppose that the normal  modes a r e  a function 

of t ime ,  the mode shape al ter ing continuously as  the  beam vibra tes .  

However, if  normal  modes exist ,  they must  be s table;  that i s ,  the beam 

must  r e tu rn  to a cer ta in  shape periodically. 

modes a r e  unstable. 

Numerical  P rocedure  

If i t  does  not, then the no rma l  

In o rde r  to investigate analytically whether such t ime dependent 

normal  modes a r e  stable,  one must appeal to physical  intuition fo r  c e r -  

tain basic  assumptions.  

does  not vary  very  rapidly so  that i t  may be a s sumed  to remain  constant 

for  sufficiently smal l  in te rva ls  of t ime.  

equations ( l ) ,  i t  i s  l inear  and normal  modes exist ,  together with a denum- 

erably infinite sequence of d i scre te  f requencies  f o r  any se t  of suitable 

boundary conditions. At the end of the t ime interval ,  one may u s e  the 

second of equations (1)  to calculate a new membrane  tension and a new set  

of n o r m a l  modes and natural  frequencies.  

f i r s t  normal  mode ( that  i s ,  the normal  mode corresponding to the lowest 

frequency) of the f i r s t  t ime interval will m e r g e  into the f i r s t  normal  of 

the second t ime interval  and so on for  all subsequent t ime in te rva ls  and 

o ther  no rma l  modes.  

We suppose f i r s t  that the axial  tension N in (1) 

If N i s  constant in the f i r s t  of 

Phys ica l  intuition suggests  that the 

This  i s  a fundamental assumption of the investigation. 

Since normal  modes depend on the initial conditions, one m u s t  

specify such conditions consistently. Assuming that  the beam is initially 
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displaced with ze ro  initial velocity, the no rma l  modes a r e  completely 

defined by the tension N.  

F o r  a constant N, one m a y  a s s u m e  that 

w = X(x)exp(ipt) 

where X is a function of x alone. 

The initial condition i s  specified by the tension p a r a m e t e r  

in which f a ,  the amplitude of the  displacement,  i s  unknown to begin with, 

A i s  the cross-sect ional  a r e a  and p r ime  denotes differentiation with 

respec t  t o  x. 

F o r  purposes  of computation, i t  i s  convenient to wr i te  the relation 

(3)  in the form 

-I -i 

with 

0 

where  N>k i s  the "buckling load" of the beam t rea ted  a s  a column and h i s  

any convenient dimension of the beam c r o s s  section, such as  i t s  depth. 
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If we l e t  

where  

then i t  may  be shown by elementary p rocedures  that f o r  beams  clamped 

a t  (x  = 0, a) and f o r  beams  clamped a t  x = 0 and simply supported at x = a, 

the no rma l  modes  X(x) a r e  given by 

ax px p sinh- ax  - a sin--- Px 
a a c o s h y  -  COS-^ 

X(x) = -t 
cosh a - cos  p a sin F - p sinh a 

The frequency equations f o r  the two c a s e s  a r e ,  however, different,  

F o r  the clamped-clamped beam,  the equation is  

u ( 1  - cosh a cos  p)  t p sinh a s in  p = 0 

( 7 )  

and fo r  the  clamped simply- supported beam,  t h e  frequency equation i s  

a s in  p cosh a - p cos  p sinh a = 0 ( 9 )  

F o r  a given p, a, p and u mus t  satisfy equations (6 )  and (8)  o r  ( 9 ) .  

The va lues  of a, p and u may thus always be obtained by t r i a l  and e r r o r .  

With a and p known, the mode shape i s  completely defined by ( 7 ) .  It i s  

to  be  noted, however, t h e r e  a r e  an infinity of the se t  (a,  6,  u )  fo r  a given 

p. W e  a r e ,  fo r  the present ,  in te res ted  only in the se t  corresponding to the 

lowest  value of u. 

Consider  any t ime  interval extending f rom r A  to  ( r  t l ) A ,  where  

A i s  a suitably s m a l l  quantity. At t ime  rA, the displacement  and velocity 

are given by: 
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The tension p a r a m e t e r  is  

Knowing kr ,  one may  calculate ar, pr ,  p r  and  Xr. The displacement  

velocity and m e m b r a n e  tension for (r44t<(r t 1)A a r e  then given by 

However, the displacement,  velocity and m e m b r a n e  fo rce  a t  t = 0 

as given by (13),  (15) and (16) must  be  the s a m e  as those given by ( l o ) ,  (11) 

and (12) and so 
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F r o m  (15) and (19) 

Substitution in (16)  yields  

The relat ions (19) and (20 )  thus give f r  and gr in t e r m s  of all the known 

quantit ies and enable one to proceed to  the next step.  It i s  important  in 

this  computation that the t ime steps be taken as smal l  as prac t ica l  as  

otherwise the resu l t  will indicate an unstable motion even when it  i s  

essent ia l ly  stable.  

Although when the beam i s  simply supported, an exact solution in 

t e r m s  of elliptic functions can be obtained, i t  i s  of in te res t  to apply the 

numer ica l  method to this  c a s e  also to afford a comparison with the solu- 

t ions fo r  other boundary conditions. 

F igu re  1 shows a plot of the center  deflection ra t io  (w/h )  against  the 

velocity/frequency ra t io  ( v / h ) / p ,  the so called phase  plane. 

considered i s  stable and periodic,  a closed curve  should resu l t .  

If the motion 

The p a r a m e t e r s  chosen in the computations were  those of the 

s t ee l  spec imens  to  be used  in the experimental  work in p r o g r e s s  and a r e  

as follows: 

length = 30 i n .  depth = 0. 25 i n . ,  width = 0.  30 in. 
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FIGURE 1 
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The result ing nondimensional pa rame te r s  a r e  

A1 = (EI/a4p) ' / '  = 19.456 

A2 = (Ah2/41) = 3 

The pa rame te r  X w a s  taken a s  2.  

In F igu re  1 it may benoted that all the cu rves  a r e  essent ia l ly  

c losed,  although not exactly so. Extended computations, with var ious  

values of the t ime interval  show, however, that the gap i s  a function of 

the t ime interval  and d e c r e a s e s  a s  the interval  d e c r e a s e s .  

tat ions the quantity (PA) was taken a s  

w e r e  required to complete ZIT radians.  

interval  seemed unwarranted,  especially a s  i t  has  been established that 

In the compu- 

005 and thus over  1000 in te rva ls  

A fu r the r  dec rease  in the t ime 

any slight gap a t  c losure  was an approximation e r r o r .  

We conclude therefore  that the motion i s  s table  and periodic fo r  

all boundary conditions, and that i s  meaningful to speak of a t ime-  

dependent normal  mode. 

P e r i o d  of ' lFundamental ' '  Mode 

The nonlinear period T of vibration fo r  the "fundamental" mode 

may  be writ ten in the following form 

T = 4K/p 
2 1/2 

p = a2Al  (1 t vA2-3-) 

2 
m = - 1 vA2&/(1 t vA2- 

2 h2 
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in which K i s  the complete elliptic integral  of the f i r s t  kind, p i s  the 

frequency,  f o  i s  the initial displacement and m i s  the pa rame te r  of the 

Jacobian elliptic functions. The p a r a m e t e r s  a and v have the following 

values fo r  the var ious  boundary conditions 

(a) Simply supported 

a = lr, v = 1  

(b)  Clamped- clamped 

a = 4.73, v = 3077 

( c )  Clamped- simply supported 

a = 3.927, v = 1.6697 

Formulas  (21) ,  ( 2 2 )  and (23) are  theoretically exact only for  

the simply supported case .  

having been a r r i v e d  a t  by applying a Galerkin approximation to the 

For the other  two c a s e s  they a r e  approximate,  

differential  equation 3 . 

Table 1 gives a comparison of the fundamental per iod as  a r r i v e d  a t  

by formula  ( 2  1) and by the numerical  p rocedure  outlined in this repor t .  

It will be  noted that the agreement  is c lose  for  the simply supported c a s e  

only. 

the period as  might be expected. 

F o r  the other  boundary conditions, formula ( 2  1) underes t imates  
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TABLE 1 

FUNDAMENTAL PERIOD T (IN SECS) 

ss cc cs 

Formula  ( 2  I )  02088 .00860 . 0 0 8 7 8  

Num. P r o c .  02080 009 34 . 0 1348 

S S  = Simply supported 

CC = clamped-  clamped 

CS = clamped-  simply supported 
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STATUS OF EXPERIMENTAL WORK 

A facility for  experimentally determining the vibration cha rac t e r -  

is t ic  of beams  with var ious  boundary conditions by the Moire’method 

has  been assembled ,  and prel iminary s ta t ic  cal ibrat ion t e s t s  have been 

completed.  

Comparat ive gr id  t e s t s  were  made with l ines  of 0 .05  inch, 0 .  1 inch 

and 0 .  125 inch widths to determine the preferab le  gr id  system fo r  optimum 

definition of the Moire’ pat terns .  

g r i d  with an overal l  s ize  of 20 inches by 60 inches,  mounted on 15-gage 

s t ee l  plate ,  will be  used  to conduct future  t e s t s .  

Resul t s  favored the 0 .  1-inch l ine  and a 

T e s t s  thus far were  made with a high strength s tee l  beam of 2 2  

inches cant i levered length and 0. 250 inch by 0.200 inch c r o s s  section. 

Two beams  of different configurations have been designed--one with both 

ends clamped, the other with both ends pinned (F ig .  2 ) .  Each beam will 

be approximately 30 inches long, with a 0 .250  inch of 0.300 inch c r o s s  

section; fabr icated f r o m  high strength s tee l  plate,  and having a 

inch reflective surfacemachined t o  a No. 2 finish. Experiments  using these 

b e a m s  will commence af te r  all t e s t s  on the cant i levered beam have been 

completed.  

25- 

Two pre l iminary  dynamic t e s t s  were  conducted on the cant i levered 

beam to de te rmine  the effectiveness of c a m e r a  equipment assembled .  
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FIGURE 2 
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A Fas tex ,  16 mi l l imeter ,  high speed motion c a m e r a ,  capable of taking 

8000 p ic tures  p e r  second, was used together with Wollensak "Goose" 

Control Unit. 

synchronizing, in proper  t ime relationships,  the Fas t ex  c a m e r a  operation 

and the event being photographed. 

increasing the voltage over  that normally applied t o  the c a m e r a  so that 

increased  c a m e r a  speeds may be obtained. 

The "Goose" control unit provides  a convenient means  fo r  

It a l so  provides  a means  fo r  safely 

F o r  Tes t  No. 1, the camera  speed was se t  for  an average  of 5000 

p ic tures  p e r  second. Due to focal  length l imitat ions of l enses  locally 

available,  a dis tance of 60 inches between g r id  and cantilevered beam 

was required to photograph the en t i re  length of beam. A wide angle lens  

will be obtained to enable reduction to the design dis tance of 40 inches o r  

l e s s .  

position, the beam was displaced by using an  electromagnet to deflect 

the beam 1 / 2  inch and then suddenly re leased .  The second exposure 

on the same  fi lm was made  while the beam was vibrating. 

After the init ial  exposure was taken of the beam in i t s  neut ra l  

Since the method of obtaining Moire' f r inges  necess i ta tes  rewind- 

ing of the fi lm so that a double exposure of the event can be made,  a 

slight change in the position of the c a m e r a  resul ted in a relat ive 

displacement  of the images  of the beam in the two exposures.  

Subsequent t e s t s  with a s t i l l  c a m e r a  proved that the double image 

of the beam could be eliminated by substituting a wider sur face  m i r r o r  in 

place of the beam on the initial exposure,  thereby simulating the gr id  
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l ines  on the beam in i t s  neut ra l  position. 

taken of the vibrating beam so that only one p ic ture  of the beam itself 

i s  taken. 

The second exposure is then 

Tes t  No. 2 was  conducted on a portion of the cant i levered beam on 

one ro l l  of f i lm using the design dis tance of 40 inches between gr id  and 

specimen and a c a m e r a  speed of 2000 p i c tu re s  p e r  second. 

ro l l  of film was used  to  photograph the beam a t  a dis tance of 28. 5 inches 

with a c a m e r a  speed of 1000 f r a m e s  p e r  second. 

relationship,  3 .  5d (d  = distance between gr id  and specimen) was  main-  

tained on both sequences.  Additional flood l a m p s  were  instal led to  

i n c r e a s e  illumination of the grid,  and the  dec reased  c a m e r a  speed a l s o  

allowed m o r e  light to penetrate  through the ape r tu re  plate  openings to  

the f i lm plane. 

Another 

The gr id  rad ius  

Viewing of the developed f i lms  revealed expected Moire’ 

pa t t e rns .  Quantitative data could not b e  der ived f rom these  f i lms  s ince 

only a portion of the beam was  photographed in these  experiments ,  and 

definition was  l imited due to  overexposure.  However, we a r e  confident 

that  with a minimal  amount of additional testing to perfect  the c a m e r a  

set t ings and t e s t  procedure,  quantitative r e su l t s  will be achieved in the 

n e a r  future .  
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